PHY 202 Homework 3

Due Friday, February 6 at noon in my office.

The first test will be held on Friday, February 13.

- 1. Consider a uniform electric field in the \hat{x} -direction: $\mathbf{E} = E_x \hat{x}$. An electron is shot out of a gun in the \hat{y} direction with initial velocity $\mathbf{v} = v_0 \hat{y}$. Find an expression for the subsequent motion of the electron. Draw a graph showing the path of the electron; express the shape of the curve as a function y vs. x. In this problem, you can ignore the force of gravity.
- 2. Here is something we did in lecture. Consider a plane with charge density σ (units C/m^2).
 - (a) Find all of the symmetries of this system.
 - (b) Use symmetry arguments to determine the direction of the resulting **E** field on each side of the plane.
 - (c) Use symmetry arguments to determine how the **E** field behaves as a function of position.
 - (d) Next you will use the Gauß law to find **E**. Draw a picture illustrating an appropriate Gaußsche Oberfläche (Gaussian surface). A cube that contains part of the surface would be a good choice.
 - (e) Using Gauß' law, determine **E** as a function of distance from the plane.

This is more of an essay question than a calculation; be sure to explain your answer clearly.

- 3. Consider two parallel planes separated by a distance a. One plane has charge density σ and the other has charge density $-\sigma$.
 - (a) Discuss the symmetries of this system.
 - (b) Determine **E** between the plates and outside of the plates u2sing the results from Problem 2 and the superposition principle.
 - (c) What is the voltage difference between the plates as a function of σ and a? (Don't forget to include the contribution from both plates.)
- 4. A uniform electric field, magnitude E = 30 N/C, exists parallel to the axis of a rectangular block with sides of length a = 3 cm and b = 5 cm. Let the surface S be the slanted side of the block. Calculate the surface integral $\iint_S \mathbf{E} \cdot \hat{n} \, dA$ to

find the total electric flux Φ_E going through that surface.

- 5. A very long metal rod, radius ρ , has a uniform surface charge density σ .
 - (a) Find the symmetries of this system. What do these symmetries imply about the electric field?
 - (b) Use Gauß' law to find the electric field at a radius 2ρ .
 - (c) What is the electric field at a radius $\rho/2$? Explain your answer.
- 6. An early (incorrect) model of the hydrogen atom was suggested by J. J. Thompson. It consists of a positive cloud of charge +e that is uniformly distributed throughout the volume of a sphere of radius R. The electron, charge -e, is located at the center of the sphere.

- (a) What are the symmetries of the positive cloud of charge +e? What does this imply about the **E** field generated by the positive cloud of charge?
- (b) Use Gauß' law to show that the electron -e is at a *stable* equilibrium at the center.
- (c) If the electron is displaced x from the center, where |x| < R, show that it feels a force F = -kx. Show that $k = e^2/(4\pi\epsilon_0 R^3)$.
- (d) Recall that a particle that feels a force F = -kx is a harmonic oscillator. If I displace the electron a small distance from the center, it will oscillate. What is the frequency of small amplitude oscillations of the electron?
- (e) If you look at the spectrum produced by hydrogen atoms, the brightest spectral line is the Lyman- α line with a frequency of $2.47 \cdot 10^{15}$ Hz. Find R such that the small amplitude oscillations will have this frequency. How does your value of R compare with the Bohr radius?

- 7. Consider a vacuum tube having two parallel plates separated by a distance of 5 cm. The voltage difference is 1000 V. An electron is emitted from the negatively charged plate with negligible kinetic energy.
 - (a) What is the acceleration of the electron? (Define variables and your answer as an algebraic expression.)
 - (b) What is the velocity of the electron, in m/s, just before it strikes the positively charged plate?
 - (c) What is the electron's maximum kinetic energy? Express your answer in joules and in electron volts (eV).
 - (d) How long does it take for the electron to traverse the region between the plates?
 - (e) If the separation between the plates is doubled, how do your answers for (7a)-(7d) change?