PHY 202 Test 3 Preparation Spring semester, 2004 The purpose of this assignment is to help you prepare for the Test 3. Fill in the appropriate laws or definitions; all variables must be defined somewhere in review sheet; draw a picture when appropriate (*). Bring the completed assignment with you for use during the exam, and hand it in with your test: it will count as part of your test grade. Do not include any "extra" information on this assignment. | with your test: it will count as part of your test grade. Do not include any "extra" information this assignment. | |--| | • Vector definitions | | – the gradient operator ∇ = | | – Cross product (for combinations of \hat{x} , \hat{y} , and \hat{z}). | | – other right hand rule (unit normal to surface) \clubsuit | | (This is the relation between the unit normal to a surface and direction of path on the boundary of that surface.) | | – electric or magnetic flux, $\Phi_{\mathbf{E}}$ or $\Phi_{\mathbf{B}}$ \clubsuit | | | | ullet Force of $f E$ and $f B$ fields on charged particles | | – Lorenz force law (definition of ${\bf E}$ and ${\bf B})$ | | - motion of particle in a circle (vector form) and centripetal acceleration | | – force on a wire ♣ | | - electri | ic and magnetic dipole moments | | |---------------|--|---------------------------------------| | | electric | magnetic | | definition | * | * | | | | | | | | | | torque | | | | | | | | | | | | energy | | | | | | | | | | | | • Relation be | etween V and ${f E}$: | | | | | | | – ıntegr | ral form 🕹 | | | | | | | | | | | – deriva | ative form | | | | | | | • Charge/cu | rrent conservation | | | – defini | tion of current (give units) \$\\\$ | | | – denni | tion of current (give units) | | | | | | | , , | | | | – law in | sentence form | | | | | | | – law in | ${f t}$ terms of $ ho$ and ${f J}$ | | | • Maxwell's | s equations Include pictures showing a | ny integration surfaces/volumes . ty. | | - Gauß | 'law | | | | | | | | | | | | | | | Ampà | ara's law (alder version, for static fields) | | | - Ampe | ere's law (older version, for static fields) | | | | | | | | | / 11 · · · · · | | – Farad | ay's law for a coil of wire with N loops | (older version) | | Superposition principle: | | |---|----------| | • Symmetries: | | | – of ${\bf E}$ and V : | | | – of B : | | | • Charges produce electric fields | | | – Coulomb's law (comes from Gauß' law) ♣ | | | rule for direction of \mathbf{F} : | | | – Potential V of point charge (from Coulomb's law) \P | . | | - E at the surface of a conductor | | | - E in the interior of a conductor | | | • Currents produce magnetic fields | | | – other-other right hand rule \clubsuit | | | (The direction of the ${f B}$ field from a wire.) | | | B field of straight wire ♣ | | | – ${\bf B}$ field of a tightly wound wire solenoid \clubsuit | | | Biot-Savert law (comes from Ampère's law) ♣ | | | Circuits | |---| | – definition of resistance (Ohm's law) \clubsuit | | - definition of electric power | | Kirchoff's 2 laws (note the associated conservation laws) | | | | * | | – definition of capacitance \clubsuit | | energy of a capacitor: | | definition of (self) inductance ♣ | | | | energy of an inductor: |