********* Eigenvalues for the 3+1 transverse lattice ********* Couplings: m^2, G^2 N, beta, la_1, la_2, la_3, la_4, 0 1 2 3 4 5 6 la_5, tau_1, tau_2 (2-9 divided by a^2) 7 8 9 Use chi^2 fit with 41 criteria and tolerance 0.01. Overall scale from minimizing chi^2. Parity doublets (o,multi,state) with error for difference over average. ( 1, 5,0) and ( 1, 6,0), error 0.25 (-1, 5,0) and (-1, 6,0), error 0.25 ( 1, 7,0) and (-1, 4,0), error 0.25 Spectrum for P_perp a = (0,0), ( 0.25 0) using (# states, multiplet, o, c^2 error for each) = (4, 9 & 8, 1 & -1, 0.25 2 2 2) (4, 8 & 9, 1 & -1, 0.25 2 2 2) (4, 7 & 10, 1 & -1, 0.25 2 2 2) (4, 10 & 7, 1 & -1, 0.25 2 2 2) Spectrum for P_perp a = (0,0), ( 0.25 0.25) using (# states, multiplet, o, c^2 error for each) = (4, 11 & 12, 1 & -1, 0.25 2 2 2) (4, 12 & 11, 1 & -1, 0.25 2 2 2) (4, 14 & 13, 1 & -1, 0.25 2 2 2) (4, 13 & 14, 1 & -1, 0.25 2 2 2). Ordinary spectra multiplets, 4 states, (o,multiplet) = ( 1, 3) (-1, 3) ( 1, 4) (-1, 4) ( 1, 5) (-1, 5) ( 1, 6) (-1, 6) ( 1, 7) (-1, 7) . All spectra extrapolated using (K,p) = (16/2,8) (16/2,6) (20/2,6) (26/2,6) . Winding potential using (n,K,p) = ( 2 0,20/2,4) ( 2 0,20/2,6) ( 2 0,24/2,4) ( 2 0,32/2,4) ( 3 0,19/2,5) ( 3 0,19/2,7) ( 3 0,25/2,5) ( 3 0,33/2,5) ( 4 0,18/2,6) ( 4 0,18/2,8) ( 4 0,24/2,6) ( 4 0,32/2,6) . Roundness of winding using (n,K,p) = ( 2 2,16/2,6) ( 2 2,16/2,8) ( 2 2,24/2,6) ( 2 2,28/2,6) with error 1; in G^2 N units. Heavy potential determined using (n,K,p,K_max) = ( 0 0,-34/2,2,3) ( 0 0,-34/2,4,3) ( 0 0,-34/2,2,4.5) ( 0 0,-50/2,2,3) ( 0 0,-50/2,2,4.5) ( 0 0,-60/2,2,3) ( 0 0,-60/2,2,4.5) , L = 3 4 6 (all in G^2 N units); relative scale error=0.1. Roundness determined using (n,K,p,K_max) = ( 1 0,-17/2,3,3) ( 1 0,-17/2,5,3) ( 1 0,-17/2,3,4.5) ( 1 0,-33/2,3,3) ( 1 0,-33/2,3,4.5) ( 1 0,-55/2,3,3) ( 1 0,-55/2,3,4.5) L=0 and error 0.1; ( 1 0,-17/2,3,3) ( 1 0,-17/2,5,3) ( 1 0,-17/2,3,4.5) ( 1 0,-33/2,3,3) ( 1 0,-33/2,3,4.5) ( 1 0,-55/2,3,3) ( 1 0,-55/2,3,4.5) L=2.5 and error 0.1; ( 1 0,-17/2,3,3) ( 1 0,-17/2,5,3) ( 1 0,-17/2,3,4.5) ( 1 0,-33/2,3,3) ( 1 0,-33/2,3,4.5) ( 1 0,-55/2,3,3) ( 1 0,-55/2,3,4.5) L=5 and error 0.1; ( 1 1,-30/2,2,3) ( 1 1,-30/2,4,3) ( 1 1,-30/2,2,4.5) ( 1 1,-40/2,2,3) ( 1 1,-50/2,2,4.5) ( 1 1,-60/2,2,3) ( 1 1,-60/2,2,4.5) L=0 and error 0.1; all in G^2 N units. p-extrapolation using n=( 1 0) and (K,p) = (13/2,3) (35/2,3) (45/2,3) (13/2,5) (29/2,5) (13/2,7) (17/2,7) . Result format: Fit info, # steps, chi^2, and p damping, scale G^2 N/sigma. The 10 couplings (G^2 N units); which couplings -- if any -- were fit. Winding potential and heavy souce potential fits. Roundness of winding potential, 1 values, and roundness of heavy source potential, 4 values, (G^2 N units) showing measured value and derived value for each. The rescaled spectrum for each P_perp*a and c^2 values. Finally come the states for the ordinary spectra. 2 11 51.97483306 -1.26002055 5.726056781 0.1453085056 1 1.26007 0.176242 -0.220548 10.799089 0.262786 1.781729 -0.1 0.1 2 3 4 5 6 7 8 9 0.287419 -0.708951 -0.663488 0.212943 0.043882 -0.041499 1.828718 1.507463 0.715236 0.684061 0.961201 0.876445 1.381195 1.286185 1.249206 0.958791 11.109169 11.153776 1.174596 26.286670 26.297924 0.296349 26.421988 26.456224 0.901506 26.635672 26.641996 0.166526 18.773009 18.782286 0.244272 36.673767 36.689814 0.422558 47.146274 47.141582 -0.123560 50.011373 50.011574 0.005293 18.773009 18.795508 0.592463 29.620823 29.655745 0.919569 36.673767 36.677888 0.108516 47.146274 47.143016 -0.085789 31.345034 31.365026 0.526415 35.347784 35.337581 -0.268665 43.365728 43.382299 0.436336 48.193083 48.195576 0.065661 11.109169 11.198433 1.175270 26.286670 26.295576 0.117262 27.253648 27.272762 0.251661 31.345034 31.337869 -0.094344 18.773009 18.796002 0.302728 36.673767 36.693086 0.254365 47.146274 47.137778 -0.111861 49.242100 49.255070 0.170774 18.773009 18.813575 0.534105 29.620823 29.690667 0.919573 36.673767 36.694823 0.277230 47.146274 47.139027 -0.095417 26.421988 26.490139 0.897288 26.635672 26.662021 0.346914 31.345034 31.337718 -0.096333 34.229035 34.226187 -0.037498 11.109169 27.253648 26.286670 34.094519 58.070082 58.804996 71.767264 69.351822 53.380331 68.711360 85.929875 98.657170 29.620823 50.644738 62.518259 69.104488 26.421988 26.635672 34.229035 47.726152 50.011373 57.561982 68.325224 70.043585 35.347784 59.565277 69.180705 63.321985 49.242100 63.752638 68.303228 61.747474 18.773009 36.673767 50.195489 47.146274 31.345034 43.365728 48.193083 55.298924 2 11 106.0803187 -0.8324267801 4.427835489 0.1921681542 1 0.7785433692 -0.2263631332 -0.2803948946 19.17838729 -0.1045987523 4.752406427 0.3059279317 -0.04260698916 2 3 4 5 6 7 8 9 0.442850 -0.496142 -0.732366 0.215410 0.048072 -0.053286 4.566565 2.955110 0.869518 0.664712 1.108326 0.866679 1.541268 1.289054 1.486457 0.932920 11.169085 11.215103 1.443777 20.606363 20.629238 0.717659 26.577151 26.522470 -1.715536 26.806452 26.829077 0.709856 20.883749 20.894782 0.346157 39.524269 39.536225 0.375107 46.392832 46.366025 -0.841020 46.451334 46.458032 0.210145 20.883749 20.894892 0.349622 31.487013 31.498063 0.346678 39.524269 39.542633 0.576146 46.392832 46.372219 -0.646699 28.662865 28.677452 0.457673 32.428775 32.419766 -0.282666 41.515964 41.533050 0.536028 46.826020 46.810156 -0.497707 11.169085 11.261098 1.443412 26.577151 26.463024 -1.790300 26.806452 26.855551 0.770221 28.662865 28.690398 0.431915 20.883749 20.908442 0.387354 39.524269 39.556062 0.498726 46.392832 46.384871 -0.124874 46.451334 46.460032 0.136445 20.883749 20.903404 0.308330 31.487013 31.509117 0.346741 39.524269 39.553130 0.452736 46.392832 46.313294 -1.247703 20.606363 20.652202 0.719070 27.021928 27.056504 0.542387 28.662865 28.641137 -0.340843 30.712843 30.730718 0.280405 11.169085 26.577151 26.806452 30.722550 54.005699 57.836418 64.992022 68.515766 49.464670 69.080991 67.575175 87.086147 31.487013 49.029572 60.728675 65.653548 20.606363 27.021928 30.712843 41.712399 46.612614 56.783932 64.297902 67.179777 32.428775 59.361317 63.344976 62.838809 51.418744 63.891541 63.325707 65.823246 20.883749 39.524269 46.451334 46.392832 28.662865 41.515964 46.826020 52.133314 2 39 72.33756509 -1.211581885 5.021928872 0.25 1 1.793042746 0.498668268 -0.2733701498 7.106598741 0.3982458139 1.190444993 -0.1557649057 -0.371849808 2 3 4 5 6 7 8 9 0.275317 -0.603819 -1.675182 0.220641 0.029736 -0.027842 0.904027 1.389316 0.725358 0.600567 0.904430 0.823499 1.290586 1.271839 1.234921 0.844484 8.174079 8.228628 1.206735 20.522419 20.571609 1.088182 22.067096 22.064270 -0.062514 26.333219 26.326929 -0.139144 15.484348 15.491042 0.148087 28.927890 28.940235 0.273087 40.376500 40.381956 0.120683 44.030375 44.035162 0.105917 15.484348 15.504392 0.443425 25.863506 25.908176 0.988185 28.927890 28.930423 0.056032 40.376500 40.372074 -0.097915 31.012020 31.029993 0.397587 34.518131 34.509904 -0.181997 37.015280 37.029727 0.319606 44.107006 44.106921 -0.001884 8.174079 8.283164 1.206592 22.067096 22.061310 -0.063994 26.333219 26.320851 -0.136803 31.012020 31.159613 1.632513 15.484348 15.504664 0.224718 28.927890 28.940561 0.140146 40.376500 40.361697 -0.163743 40.989729 41.014053 0.269048 15.484348 15.517532 0.367051 25.863506 25.952810 0.987787 28.927890 28.945023 0.189499 40.376500 40.393840 0.191789 20.522419 20.620311 1.082776 26.598028 26.600909 0.031867 31.012020 31.186756 1.932749 36.232808 36.174035 -0.650093 8.174079 22.067096 26.333219 36.083965 51.350902 53.132566 60.905114 58.803834 49.530500 70.041483 66.291119 66.322701 25.863506 45.480737 53.016800 66.242040 20.522419 26.598028 36.232808 38.019199 44.232861 51.274271 57.520526 59.117579 34.518131 48.241879 61.571014 68.531171 40.989729 51.865981 62.162897 65.077113 15.484348 28.927890 44.030375 40.376500 31.012020 37.015280 44.107006 51.201572